An algebraic analogue of a formula of Knuth
نویسنده
چکیده
We generalize a theorem of Knuth relating the oriented spanning trees of a directed graph G and its directed line graph LG. The sandpile group is an abelian group associated to a directed graph, whose order is the number of oriented spanning trees rooted at a fixed vertex. In the case when G is regular of degree k, we show that the sandpile group of G is isomorphic to the quotient of the sandpile group of LG by its k-torsion subgroup. As a corollary we compute the sandpile groups of two families of graphs widely studied in computer science, the de Bruijn graphs and Kautz graphs. Résumé. Nous généralisons un théorème de Knuth qui relie les arbres couvrants dirigés d’un graphe orienté G au graphe adjoint orienté LG. On peut associer à tout graphe orienté un groupe abélien appelé groupe du tas de sable, et dont l’ordre est le nombre d’arbres couvrants dirigés enracinés en un sommet fixé. Lorsque G est régulier de degré k, nous montrons que le groupe du tas de sable de G est isomorphe au quotient du groupe du tas de sable de LG par son sous-groupe de k-torsion. Comme corollaire, nous déterminons les groupes de tas de sable de deux familles de graphes étudiées en informatique: les graphes de de Bruijn et les graphes de Kautz.
منابع مشابه
An analogue of the Robinson-Schensted-Knuth correspondence and non-symmetric Cauchy kernels for truncated staircases
We prove a restriction of an analogue of the Robinson-Schensted-Knuth correspondence for semi-skyline augmented fillings, due to Mason, to multisets of cells of a staircase possibly truncated by a smaller staircase at the upper left end corner, or at the bottom right end corner. The restriction to be imposed on the pairs of semi-skyline augmented fillings is that the pair of shapes, rearrangeme...
متن کاملNonsymmetric Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm
We exhibit a weight-preserving bijection between semi-standard Young tableaux and skyline augmented fillings to provide the first combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for skyline augmented fillings. We also prove that ...
متن کاملGrowth Diagrams and Non-symmetric Cauchy Identities on Nw or Se near Staircases
Mason has introduced an analogue of the Robinson-Schensted-Knuth (RSK) correspondence to produce a bijection between biwords and pairs of semiskyline augmented fillings whose shapes, compositions, are rearrangements of each other. That pair of shapes encode the right keys for the pair of semi-standard Young tableaux produced by the usual Robinson-Schensted-Knuth (RSK) correspondence. We have sh...
متن کاملComment on ‘a Decomposition of Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm’
We exhibit a weight-preserving bijection between semi-standard Young tableaux and semi-skyline augmented fillings to provide a combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for semi-skyline augmented fillings. This procedure co...
متن کاملA Simple Trace Formula for Algebraic Modular Forms
We derive an elementary formula for the trace of a Hecke operator acting on a space of algebraic modular forms, as a sum of character values. We describe explicit computations in the case of the unitary group U(4), allowing the determination of the eigenvalues of a certain Hecke operator. This produces numerical evidence for a U(2, 2) analogue of Harder’s conjecture, on congruences between Heck...
متن کامل